If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2+21p=0
a = 6; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·6·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*6}=\frac{-42}{12} =-3+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*6}=\frac{0}{12} =0 $
| s+7+46=193 | | 7m+4m-5m=78 | | 28+x=61 | | X-4-3x=8 | | 3v+2(v-2)=6 | | (3x)+(3x)=36 | | 1038=6{x+17} | | t+(-23+45)=-5 | | (8x+1)+(8x+1)=(12x+38) | | -18=-2n+8n | | 4x=2(x+80 | | 3-6a-4a=-7 | | 6-4x=-3-x | | 2(8x+1)=(12×+38) | | 7b+9=37 | | 8x-6=2x-1 | | r/7=1 | | 1+8x-3x=11 | | -5=4b-5b | | C=5h+8 | | 14=7z | | 9x-8+7x-3=180 | | (3x+1)°+(x-20)°=(5x-59)° | | 74-x=48 | | 15=4-3/x | | 5/5=3n+2n | | 1/2(6p+16)=7 | | 2s(s+1)(s-4)=0 | | 54+w=10w | | -14=3k-5k | | B-a=5 | | 12x+13=100-10x |